引起電磁流量計測量誤差的原因有哪些
發(fā)布時間:2022-12-09 09:46:06來源:hseauto.cn來源:..
字體: 大 中 小
一、流體電導(dǎo)率的問題
流體電導(dǎo)率的降低,將增加電極的輸出阻抗,并且由轉(zhuǎn)換器輸入阻抗引起的負(fù)載效而產(chǎn)生誤差,因此,按如下所述原則,規(guī)定了電磁流量計應(yīng)用中流體的電導(dǎo)率的下限。電極的輸出阻抗決定了轉(zhuǎn)換器所需的輸入阻抗的大小,而電極輸出阻抗,可認(rèn)為流體的電導(dǎo)率和電極大小所支配。在理論分析時將電極作為點電極,大小可以忽略。實際上,電極有一定大小,當(dāng)直徑為d的圓板電極與電導(dǎo)率為k的半無限展寬大的流體接觸時,其展寬電阻為1/2kd。因此,如果管道直徑D>>d,則電極的輸出阻抗為兩個展寬電阻之和,即等于1/Kd 。一般測量流體的電導(dǎo)率的下限為5μS/cm~10μS/cm,所以,若電極直徑為1cm,則電極的輸出阻抗就為1/Kd=100kΩ~200kΩ,為使輸出阻抗的影響限制在0.1%以下,轉(zhuǎn)換器的輸入阻抗應(yīng)為200 MΩ左右。
二、電極襯里附著物的影響
在測量有附著沉淀物的流體時,電極表面將受污染,常常引起零點變動,故必須注意,零點變化和電極污染程度兩者的關(guān)系,要進(jìn)行定量分析比較困難,但可以說,電極直徑越小,所受的影響越小。在使用中,應(yīng)注意電極的清污,以防止附著。在襯里上附著沉淀物時產(chǎn)生的誤差
Δε,如果附著的厚度是一樣,則可由式:
Δε=1-2/[1+(Kω/Kf)+(1-Kω/Kf) ×(1-2t/D)2]計算,其中Kω、Kf分別為附著物和測量流體的電導(dǎo)率,附著物厚度為t,直徑為D。若式中Kω和Kf相等,則無誤差,附著物的電導(dǎo)率較低時,上式也成立,但因為會增加電極的輸出阻抗,因此受到限制,如絕緣性沉淀物浸在流體中就是這種情況。相反,如附著金屬粉末等,因高電導(dǎo)率的附著層,使感應(yīng)電勢短路,使電極輸出偏低,造成負(fù)偏差。在測量具有沉淀附著物的流體時,除了選擇如玻璃或聚四氯乙烯等難以附著沉淀的襯里外,還應(yīng)增其流速。如果在流體中均勻地含有氣泡,則測量的是氣泡的體積流量,并且使所測量值不穩(wěn)定,而引起誤差。綜上所述,在選用流量計特別是大口徑電磁流量計時,應(yīng)考慮今后對傳感器的電極及襯里的維護(hù)問題。如選用金湖漢森爾自動化設(shè)備有限公司的刮刀電極或可更換式電極,或者在傳感器的上游或下游的適當(dāng)位置預(yù)置一個清洗用入孔,以便日后清洗傳感器。
三、信號傳輸電纜長度的問題
傳感器(即電極)與傳感器之間的連接電纜愈短愈好。但有些現(xiàn)場受安裝環(huán)境位置的限制,轉(zhuǎn)換器與傳感器的距離較遠(yuǎn),這時要考慮連接電纜的最大長度問題。傳感器與轉(zhuǎn)換器之間的連接電纜的最大長度又由電纜的分布電容和被測流體的電導(dǎo)率決定。
實際使用中,當(dāng)被測流體的電導(dǎo)率是在一定的范圍之間,因此就決定了電極與轉(zhuǎn)換器之間電纜的最大長度。當(dāng)電纜長度超過最大長度時,由電纜分布電容引起的負(fù)載效應(yīng)就成了問題。為防止這種情況發(fā)生,使用雙芯兩層屏蔽電纜,由轉(zhuǎn)換器提供低阻抗電壓源使內(nèi)側(cè)屏蔽與芯線得到相同的電壓,以形成屏蔽,即使芯線與屏蔽之間有分布電容存在,但芯線與屏蔽是同電位,則兩者之間就無電流通過,也無電纜的負(fù)載效應(yīng)存在,因此可延長信號電纜最大長度。另外,還可用特殊信號傳輸電纜延長轉(zhuǎn)換器與傳感器之間的最大長度。
四、勵磁的技術(shù)問題
勵磁技術(shù)是電磁流量計測量性能的關(guān)鍵技術(shù)之一,勵磁方式實際應(yīng)用上可分成交流正弦波勵磁,非正弦波交流勵磁和直流勵磁方式。
交流正弦波勵磁,當(dāng)交流電源電壓(有時是頻率)不穩(wěn)時,磁場強度將有所改變,所以電極間產(chǎn)生的感應(yīng)電動勢也變動,因而,必須從傳感器取出對應(yīng)于計算磁場強度的信號,作為標(biāo)準(zhǔn)信號。這種勵磁方式易引起零點變動,而降低其測量精度。
非正弦波交流勵磁,是采用低于工業(yè)頻率的方式或三角波勵磁的方式,可以認(rèn)為產(chǎn)生恒定直流,周期性地改變極性的方式,因這種勵磁電源穩(wěn)定,故不必除去磁場強度的變動而進(jìn)行運算。
交流勵磁的方式的主要問題是感應(yīng)噪聲嚴(yán)重。
直流勵磁方式,則是在電極上的極化電位成了重要障礙。故一定值的直流勵磁方式僅適用于非電解質(zhì)(如液體金屬)液體的測量。在測量自來水、源水的等水溶液時,一般采用周期性間歇的直流勵磁方式。間歇周期應(yīng)選為交流電源周期的整數(shù)倍,可消除交流電源頻率的噪聲,排除了交流磁場的電渦流和直流磁場的極化干擾,勵磁頻率降低,零點穩(wěn)定性可以提高,但儀表抗低頻干擾能力減弱,響應(yīng)速度慢,如果勵磁頻率高,則抗低頻干擾的能力增強,但儀表的零點穩(wěn)定性降低。這一問題到二十世紀(jì)七十年代研究出了低頻矩形波(50Hz的1/2~1/32),解決了長期困擾電磁流量計的工頻干擾,提高了零點穩(wěn)定性和測量精確度。二十世紀(jì)八十年代又出現(xiàn)了三值低頻矩形波勵磁技術(shù)(有50Hz的1/8為周期,采用正弦規(guī)律變化的勵磁電流),具有更好的零點穩(wěn)定性,解決了干擾電勢的影響,但降低了響應(yīng)速度,并且在測量泥漿、紙漿等含固體顆粒和纖維流體及低導(dǎo)電率流體測量時,會產(chǎn)生噪聲(因流體摩擦電極,使電極表面氧化剝離后又形成所致),使輸出信號擺動不穩(wěn);二十世紀(jì)八十年代末又針對這些問題推出了雙頻矩形勵磁方式,其勵磁波形由低頻(6.5Hz)矩形波和高頻(75Hz)矩形波疊加構(gòu)成,分別采樣與之相對應(yīng)的流量信號,得到低頻和高頻特征的兩種信號經(jīng)過處理后可再現(xiàn)實際流量的信號值。因此這種技術(shù)既具有低頻矩形波勵磁技術(shù)優(yōu)良的零點穩(wěn)定性,又具有高頻矩形波勵磁技術(shù)對流體噪聲較強的抑制能力。
五、傳感器接地的問題
電磁流量計傳感器電極檢測的流量信號是毫伏級,且以傳感器內(nèi)流體的電位為基準(zhǔn)的,所以外來干擾對它的影響極大,因而,良好的接地很大程度上決定著流量計的測量準(zhǔn)確度。被測的流體本身作為電導(dǎo)體,必須排除其他不相關(guān)的電磁干擾。電極檢測出的電勢信號,不受外界寄生電勢的干擾。對傳感器應(yīng)有良好的單獨接地線,接地電阻小于10Ω。在連接傳感器的管道內(nèi)若涂有絕緣層或是非金屬管道時,傳感器兩側(cè)應(yīng)裝有接地環(huán)。
六、結(jié)束語
隨著電子及計算機技術(shù)發(fā)展應(yīng)用,使電磁流量計性能更好,能進(jìn)行各種誤差補償,提高了測量準(zhǔn)確度;具有轉(zhuǎn)換線路異常、檢測部分異常、誤設(shè)定、空管、過限報警等自診斷功能;可通過手操器或計算機等實現(xiàn)遠(yuǎn)程通信,以調(diào)整電磁流量計的零點、量程變更、阻尼變更等。近年來,生產(chǎn)廠家推出了多種形式的電磁流量計以適應(yīng)不同性質(zhì)流體的測量。
返回